Hidden function of catalytic domain in 6-methylsalicylic acid synthase for product release.
نویسندگان
چکیده
Functional investigation of the proposed dehydratase domain of ATX, a 6-methylsalicylic acid synthase from Aspergillus terreus, revealed that the domain is not involved in dehydration of the beta-hydroxytriketide intermediate tethered on the acyl carrier protein but catalyzes thioester hydrolysis to release the product from the acyl carrier protein. Thus, we renamed this domain the thioester hydrolase (TH) domain. The intermediate bound to the TH domain of mutant H972A formed in the presence of NADPH was released as 6-methylsalicylic acid by both the intact ATX and by THID (a 541-amino acid region containing TH domain and its downstream) protein, in trans. Furthermore, THID showed a catalytic activity to hydrolyze a model substrate, 6-methylsalicylic acid-N-acetylcysteamine. The TH domain is the first example of a product-releasing domain that is located in the middle of a multidomain iterative type I polyketide synthase. Moreover, it is functionally different from serine protease-type thioesterase domains of iterative type I polyketide synthases.
منابع مشابه
Purification and properties of 6-methylsalicylic acid synthase from Penicillium patulum.
6-Methylsalicylic acid synthase has been isolated in homogeneous form from Penicillium patulum grown in liquid culture from a spore inoculum. The enzyme is highly susceptible to proteolytic degradation in vivo and in vitro, but may be stabilized during purification by incorporating proteinase inhibitors in the buffers. The enzyme exists as a homotetramer of M(r) 750,000, with a subunit M(r) of ...
متن کاملInsights into 6‐Methylsalicylic Acid Bio‐assembly by Using Chemical Probes
Chemical probes capable of reacting with KS (ketosynthase)-bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6-methylsalicylic acid synthase (6-MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6-MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isola...
متن کاملEngineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production
BACKGROUND Polyketides are one of the most important classes of secondary metabolites and usually make good drugs. Currently, heterologous production of fungal polyketides for developing a high potential industrial application system with high production capacity and pharmaceutical feasibility was still at its infancy. Pichia pastoris is a highly successful system for the high production of a v...
متن کاملCloning and characterization of novel methylsalicylic acid synthase gene involved in the biosynthesis of isoasperlactone and asperlactone in Aspergillus westerdijkiae.
Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites including isoasperlactone and asperlactone. A 5298bp polyketide synthase gene "aomsas" has been cloned in Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid sequence of aomsas shows an identity of 40-56% with different methylsalicylic acid synthase ge...
متن کاملProduction of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts.
The polyketides are a diverse group of natural products with great significance as human and veterinary pharmaceuticals. A significant barrier to the production of novel genetically engineered polyketides has been the lack of available heterologous expression systems for functional polyketide synthases (PKSs). Herein, we report the expression of an intact functional PKS in Escherichia coli and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 20 شماره
صفحات -
تاریخ انتشار 2010